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PSEUDOSPECTRAL SOLUTION OF INVISCID FLOWS
WITH MULTIPLE DISCONTINUITIES

I. INTRODUCTION
t

The author has shown [1-31 that a pseudospectral technique may be

coupled with fourth-order artifical viscosity and spectral filtering [4] to

solve inviscid flow fields in which a single discontinuity is present. The

flow fields treated in this manner have been both one and two dimensional in

character; the former consisting of a shock wave propagating in the co-

ordinate direction and the latter a supersonic wedge flow. This report

presents results using that same combination of smoothing techniques applied

to flows where multiple discontinuities arise. As in Reference 1, fhe full

inviscid equations of motion (Euler equations), cast in conservation law

form, are used together with an Adams-Bashforth time differencing algorithm.

Two classes of multiple discontinuity inviscid flows are solved: (1) a

bursting diaphragm problem, in which a shock wave and contact surface dis-

continuity are simultaneously present, but neither have yet reached a

boundary, and (2) the flowfield which arises when two normal shock waves of

unequal strengths, traveling towards each other, collide and give rise to

two shock waves of new and different strengths along with a contact surface

discontinuity.

II. Solution Technique

The time-deoendent, one-dimensional, Euler equations of motion in

conservation form are given by:

+ 9
3U + 3E 0, (la)
at ax

Mlanuscript approved June 8, 1983.
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where
.. U = , E = D -+Pu 2 ,P

:-e (e+p)u

( b)
P + " PU2

."e 2

and p is the pressure, p the density, u the velocity, and e the energy.

Equation (la) is solved in the following manner. The spatial derivative is

obtained pseudospectrally. Starting with known values of the vector

elements of E at a specified time, a Chebyshev series is fitted to the

values of each E element. The Chebyshev series is represented by

N
E(x,t) = E A (t)T (x), (2)

n=O n n

where the Chebyshev functions, Tn(x), are defined by

T (x) cos [n cos-1 (x)]. (3)~n

* The collocation points where the numerical values of are known are given

* by

x Cos 0 j ( N. (4)

Therefore, equation (2) becomes

N 7rjn(5
E(x ,t) =n 0 A n(t) cos (5)

To fit a Chebyshev series to the E data requires the solution of (5) for the

A n's. This is done using an inverse FFT.

*O The spatial derivative is then determined from the An's in the

following way. A different Chebyshev series is used to represent the

spatial derivative.

2

9- • . . .. _ , . • - i . - . ,



-x E An((t) Tn (x), (6)
n=0

where

(1) 2 N-i
A E pA, (7)

n C
n p-n+1
p+n-odd

CO = 2, C = I for 0 < n 4 N
n

(1)= 0.0

Performing the sum in (7) for the A (1)'s and using a direct FFT in (6)
n

yields the spatial derivative values at each of the collocation points.

The solution for U is then advanced in time by using the Adams

Bashforth algorithm.

+ tt-At
U. ~ + t +-At 3 tBt xJx) i + D.. (8)

This process (equations 5 through 8) is then cyclically repeated. The

dissipation term D. is evaluated from the following finite difference

representation of a fourth derivative.

D. = - {g++ U -4 [U +U._I] + 6 U.} ,; (9)
jj+2 j -2 J+l1

where j denotes the spatial position (collocation point) index. The

spectral filter (reference 4), used to damp out the high frequency solution

components, is given by

K -K o 14

- :jK -K (10)

e

where Kn is the soectral wave number, Kmax is the maximium wave number

(corresponding to the total number of collocation points) and K K

3



The time integration step size was determined from the pseudospectral

form of the Courant-Fredrich-Lewy (CFL) condition, with a Courant number of
0.5.

JS

8.0 CN

N2 max (Iul+c)

Here u is the velocity, N is the total number of points, c is the speed of

sound, and CN is the Courant number.

The boundary conditions were based on the flow which arose at each

boundary. For the bursting diaphragm problem, there was no flow (velocity =

zero) at the boundaries. (The calculations were terminated before the shock

or expansion fan reached a boundary.) Therefore, the boundary conditions

were to keep all physical variables held fixed throughout the computation.

For the colliding shock waves problem, variables were held fixed at
supersonic inflow boundaries. This is a physical boundary condition since

the integration times were kept well below those where either the contact

surface or shock wave reached their respective boundaries. Outflow boundary

conditions, namely the derivative equal to zero, were not considered in the

present work. However, at subsonic inflow boundaries, a different approach

was used. At a subsonic inflow boundary two inflow characteristics exist,

namely = u and u + c. The single outgoing characteristic propagates
dtdx

along - u-c. The respective characteristic values are (p -pc2 ), (p + puc)

and (p -puc), where c is the speed of sound. Following reference 5 two flow

variables are specified at the subsonic inflow boundary, and the third is

computed from the calculated value of the outgoing characteristic.

III. BURSTING DIAPHRAGM RESULTS

Two cases were considered:

Pressure Ratio Density Ratio

(1) 5 to 1 2 to 1

(2) 10 to 1 8 to 1

4
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They will be discussed sequentially.

Results for case (1) are shown in figures I through 4. The diaphragm

separating the two stagnation zones is located at x = 0.0. One hundred

twenty-eight Chebyshev series terms were used to represent the flow. The

time integration was carried out to t = 0.378 (3500 time steps). The
analytic solution is represented by the solid line. The dashed line

represents the analytic position of the contact surface discontinuity. The

angled solid line represents the expansion fan. At all times the shock wave

is correctly represented as a discontinuity traveling with the proper

velocity (no phase error). The contact discontinuity is spread uniformly

over four to five grid Points. That is, the points all fall on a straight

line whose slope is slightly less than ninety degrees (the exact discon-

tinuity value). The same behavior is present in the energy plots. It is

not as clearly visible in the figures because the difference in energies on

the two sides of the contact surface front are very small in comparison to

the difference in densities. The pressure and velocity correctly show no

variation across the contact front. The expansion fan is represented

properly. Some minor humps are present both on the high and low state

variable sides, and there is a slight mismatch in slope. This mismatch is a

function of the physical variable being plotted. It is greatest for the

velocity while least (and about the same) for the remaining three flow

variables.

Results for case 2 are shown in figures 5 through 8. The attributes

discussed above are also present here, as is expected. In the velocity

plots there are two zones of oscillations in the region behind the shock

wave. It turns out that the dividing line is the contact surface

location. In front of the contact surface these oscillations are very

small, while behind it they are non-existent. Additional dissipation would

remove this imperfection but at the exoense of a minor loss of shock

resolution.
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IV. COLLIDING SHOCK WAVES PROBLEM

To the authors's knowledge this is the first time this problem has been

treated by pseudospectral means. Two cases are considered:

Left Hand Side Shock Right Hand Side Shock

(1) M = 2.5 M = 1.5

(2) 4.0 1.5

The right hand side shock wave is propagating to the left while the left

hand side shock wave propagates to the right. These two cases were chosen

because after the shock waves intersect, the shock on the left (initially on

the right) moves in different directions with respect to ground fixed

coordinates for each case. It moves to the left for case I and to the right

for case 2. These cases result in supersonic inflow at the left hand side

computational boundary and subsonic inflow at the right hand side computa-

tional boundary. The boundary conditions were to keep all flow variables

fixed at supersonic inflow points, while at subsonic inflow points the

pressure and velocity were specified and the characteristic value of the

incoming characteristic was used to calculate the density. The energy

equation is used to calculate the energy. (Even though characteristic

boundary conditions were used for the colliding shock problem, this fourth-

order smoothing was not able to control Gibbs oscillations emanating from

the subsonic inflow boundary. A second-order scheme was required in the

neighborhood of that boundary to keep those oscillations under control.

Without it the computed solution rapidly diverged from the analytic solution

at the boundary.)

The initial conditions are shown in Figures 9 through 12. Results for

the first case are shown in Figures 13 through 24 . the analytic solution

is shown for comparison by the solid lines. For this case the shock waves

intersect at t - .057 . These conditions have been chosen so that, after

the intersection, the shock on the left is prooagating t7 the left with

6



respect to ground-fixed coordinates in case I and to the right in case 2.

The arrows which appear in all post-intersection figures are used only to

indicate the direction of propagation of each shock with respect to a ground

fixed frame of reference and bear no relation to other shock character-

istics. As previously mentioned the two post-intersection shock waves

travel in opposite directions for this case.

The solution at post collision times is plotted in Figures 17 through

24, corresponding to the 2000th, 4000th and 6000th iterations respectively.

. nThe solid lines represent the analytic solution. Agreement in the position

of the discontinuities between the analytic and computed solutions is very

good. At the 2000th iteration the agreement with the flow variables in the

region between the two shock waves is only fair since only five points lie

in this zone at this time. However, as the number of iterations increase

and this zone becomes larger (i.e. more points lie within it), the agreement

becomes very good. By the 4000th iteration, the computed values of flow

variables exactly match the analytic values.

The difference in resolution of the two shock waves is due to two

factors. The first is that the artificial viscosity constant cannot be

tailored to both shocks, which are of different strengths. The value used

herein was selected to provide maximum resolution of the stronger shock

while producing minimum rounding of the weaker shock. As can be seen in the

figures there is some minor rounding of the weaker shock wave. The second

and more significant reason is that the physical space point resolution is

not constant. It is greatest at x = 1 and least at x = 0.0. The weaker

shock in this case always lies in the neighborhood of x = 0.0, the minimum

point resolution zone. This is why the computed shock front of the weaker

shock is not as steep as for the stronger shock wave.

The oseudospectral resolution characteristics of the contact discon-

tinuity are not as good as those of the shock waves. Part of this is due to

the above mentioned unequal point spacing. However, most is due to the

nature of the solution scheme together with the significant difference in

the physical nature of the two types of discontinuities. Shock waves yield

discontinuous values of all flow variables across their front while contact

71
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surface discontinuities yield jumps in density and energy alone.

Results for the second case are shown in Figures 25 through 40 . There

are several important differences between this case and the first. The

initial shock strengths are such that, after intersection, both shock waves

move to the right with respect to ground fixed coordinates. Further, the

difference in post intersection shock strengths is greater in this case.

Perhaps the major difference, however, is in the initial nositions of the

shocks. In the first case both were far away from the computational

boundaries. In this case it was decided to purposely place one shock much

closer to a boundary to see what, if any, effect this would have on the

properties of the solution. The left hand shock was placed only twenty

points from the computational boundary. No adverse results were observed.

As in the first case, the comparison with the analytic solution is very

good. All shocks are resolved as sharp discontinuities and at the correct

position. The contact surface resolution was as before not as good, being

spread over four to five collocation points, though centered about the

analytic location.

V. CONCLUSIONS

The central conclusion is that the pseudospectral solution technique

together with a fourth-order artificial viscosity smoothing scheme works

just as well for cases where multiple discontinuities are present as it does

when only a single discontinuity is present. The resolution of contact

surface discontinuities is not as good as that for shock discontinuities,

the former being spread over four to five grid or collocation points as

compared to two to three grid points (one to two grid intervals for the

latter).
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